What Every Certified Health Physicist **Should Know About Transportation of** Radioactive Material SEAN M. AUSTIN, CHP PLEXUS SCIENTIFIC CORPORATION

The basics

- ► Keep doses ALARA
- ► Hows
 - ▶ Time, Distance, Shielding, Containment
- Training
- Governmental legislation and regulations, competent authority to inspect and enforce regulations

The basics

- Primary reliance on package design and preparation (Containment)
- Operational controls e.g., routing, exclusive use, special arrangements (permits)
- ► Hazard communication

The basics

- Emergency response
- Management system
- ► Compliance assurance
- Non-compliance
- Special arrangement

Dose limits

- Basic dose limits Not practical for transportation
- Secondary or derived limits
 - ► Radiation protection examples: ALI, DAC
 - Transportation: A₁, A₂, contamination and radiation level, segregation limits (transport index)

Basic Radionuclide values A₁, A₂, EXEMPTION VALUES, SPECIAL CATEGORIES

A₁ and A₂ values

- Activity limits for Type A packages
- Derived on basis of radiological consequences in event of failure of the package
- Doses deemed to be acceptable

Shipments with activity exceeding A values require use of Type B packages

§ 173.435 Table of A1 and A2 values for radionuclides.

The table of A_1 and A_2 values for radionuclides is as follows:

Symbol of	Element and	A ₁ (TBq)	A _I (Ci) b	A ₂ (TBq)	Bq) A ₂ (Ci) b	Specific activity	
radionuclide	atomic number	Ai (IBQ)	A _I (CI)	A ₂ (1bq)		(TBq/g)	(Ci/g)
Ac-225 (a)	Actinium (89)	8.0×10 ⁻¹	2.2×101	6.0×10 ⁻³	1.6×10 ⁻¹	2.1×10 ³	5.8×10 ⁴
Ac-227 (a)		9.0×10-1	2.4×101	9.0×10-5	2.4×10-3	2.7	7.2×101
Ac-228		6.0×10 ⁻¹	1.6×101	5.0×10 ⁻¹	1.4×101	8.4×104	2.2×106
Ag-105	Silver (47)	2.0	5.4×101	2.0	5.4×101	1.1×10 ³	3.0×104

A₁ and A₂ values

- Derived using the "Q" system (quantity, dose)
 - ► Q_A External photon
 - ► Q_B External beta
 - \triangleright Q_C Inhalation
 - \triangleright Q_D Skin and ingestion
 - ► Q_F Submersion

- Dose to person exposed in vicinity of accident will not exceed
 - ▶ 50 mSv (5 rem)
 - ▶ 0.5 Sv (50 rem) to organ
 - ► 0.15 Sv (15 rem) to lens of eye
- Person unlikely to remain at 1 m from package for more than 30 minutes

A₁ and A₂ values

- $\rightarrow A_1$
 - \triangleright Derived from lesser of Q_A and Q_B
- A_2
 - Least of all Q values

- ► A₁ represents the maximum activity of **special form** material allowed in Type A package
- A₂ represents the maximum activity of **normal form** material allowed in Type A package

Example A₁ and A₂ values

Radionuclide	A ₁ (TBq)	A ₁ * (Ci)	A ₂ (TBq)	A ₂ * (Ci)
H-3	40	$1,080$ (1.1×10^3)	40	$1,080$ (1.1×10^3)
Cs-137	2	54	0.6	16.2 (1.6×10^{1})
Ra-226	0.2	5.4	0.003	0.081

^{*-}Unofficial value

Exemption values

- Concentration limits
- Total activity limits for consignments
- If the shipment contains RAM not above one of these limits, it is exempt from transport regulations
- ► Individual effective dose: 10 µSv (1 mrem) in a year
- Collective dose: 1 person-Sv in a year
- Assumes normal transport conditions

Exemption values

- Activity concentration values apply to materials in a package or in or on a conveyance; assumes homogenous mixture
- Total activity exemption values apply to a consignment
 - Accounts for all radioactive material present, not just in a single package

Example exemption values

Symbol	Activity Concentration (Bq/g)	Activity Concentration (Ci/g)*	Activity Limit for Exempt Consignment (Bq)	Activity Limit for Exempt Consignment (Ci)*
H-3	1 × 10 ⁶	2.7×10^{-5}	1 × 10 ⁹	2.7×10^{-2}
Cs-137	1×10^{1}	2.7×10^{-10}	1 × 10 ⁴	2.7×10^{-7}
Ra-226	1 × 10 ¹	2.7×10^{-10}	1 × 10 ⁴	2.7×10^{-7}

^{*-}Unofficial value

Low specific activity material

- Low concentration
- A form such that an average specific activity may be assigned to it
- Degree of uniformity varies depending on category

LSA-I

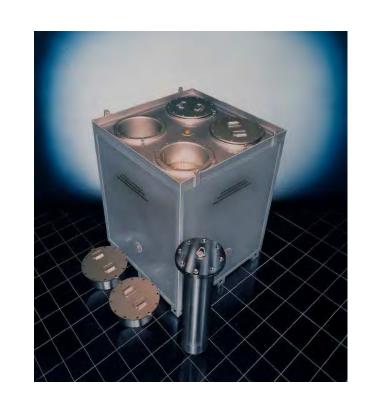
- May be shipped unpackaged or in industrial packages
 - ▶ U, Th ores and concentrates
 - Ores containing other NORM
 - Natural U, DU, Nat, Th, unirradiated
 - Radioactive material with unlimited A₂
 - Other RAM where concentration ≤30× Exempt concentration values

LSA-II

- Higher concentrations of radioactive material
- Materials may not be uniformly distributed
- Material may be present for intake after an accident
- Water with tritium concentration up to 0.8 TBq/L (20.0 Ci/L)
- Other radioactive material in which the activity is distributed throughout and the average specific activity does not exceed 10⁻⁴ A₂/g for solids and gases, and 10⁻⁵ A₂/g for liquids

LSA-III

- Concentration of RAM 20 times higher than LSA-II
- Material is essentially uniformly distributed
- Higher concentration justified by
 - Solid material only
 - Leaching test to demonstrate insolubility of material when exposed to weather conditions
 - Stronger packaging required

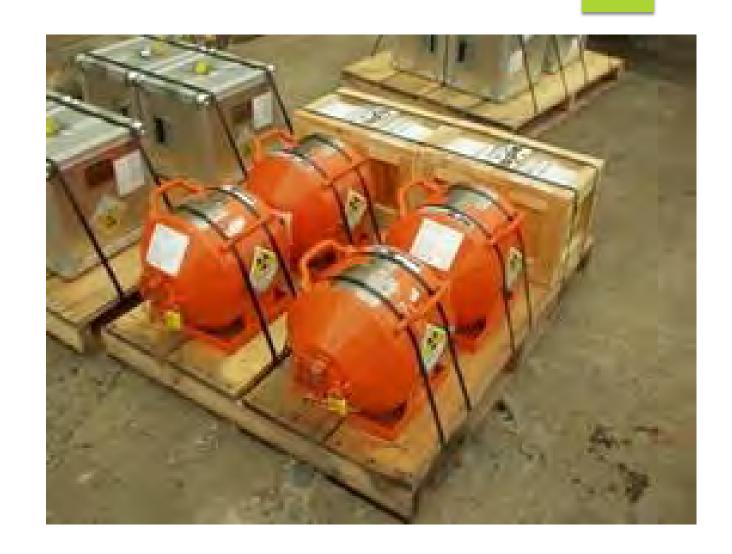

Surface contaminated objects

- ► SCO-I
 - May be shipped unpackaged or in Type IP-1 packaging
- ► SCO-II
 - Shipped in Type IP-2 packaging

- Fixed and non-fixed contamination limits
- Derived on accident scenario
 - All non-fixed contamination released
 - 20% of fixed contamination released
- Packaging requirements and contamination limits provide level of safety equivalent to Type A

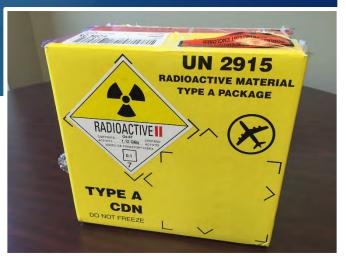
Fissile material

- Criticality safety
- Approved fissile material packages required
- ► Fissile material exceptions


Uranium hexafluoride

- Package design
- ► UF₆ must be in solid form
- Package volume limits
- Package below atmospheric pressure when offered for transport
- Excepted package option for mass <0.1 kg/package</p>

Packaging


Package type is important when considering accident conditions

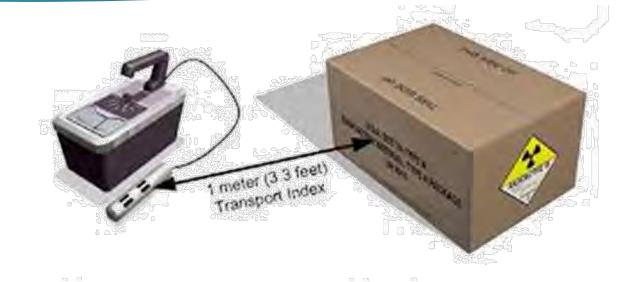
Package Type - Containment

- Type
 - Excepted
 - ► Industrial
 - ►Type A
 - ightharpoonup Type B(U), Type B(M)
 - Type C (not authorized in U.S.)

- Contamination and leakage
- Main exposure pathways are skin irradiation and ingestion and inhalation of re-suspended material
- Most hazards material commonly transported considered when establishing limits
 - ► Sr-90, Ra-226, Pu-239

Contamination limits [see 49 CFR 173.443]

- Non-fixed contamination must be as low as reasonably achievable (ALARA)
 - Applies to exterior of package, and
 - Interior of conveyances/freight container/ overpack containing packages of Class 7 material
- When surveying for non-fixed contamination, wipe an area of at least 300 cm² with absorbent material, analyze wipe sample prior to shipment (other methods may be used)
- Check areas likely to be contaminated
- Wipe efficiency of 0.1 (10%) may be used unless otherwise known



Contamination control [49 CFR §173.443(e)]

- If a package or conveyance is or suspected to be leaking,
 - Restrict access to the package or conveyance, and
 - Assess, as soon as possible, the extent of contamination and the resultant radiation level of the package or conveyance
- Check the package, the conveyance, the adjacent loading and unloading areas, and, if necessary, all other material which has been carried in the conveyance

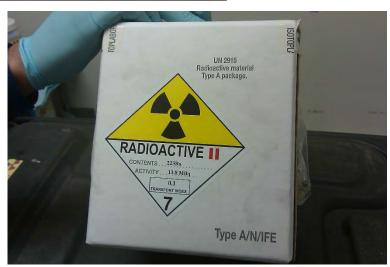
- Transport index (TI)
- Maximum dose rate at 1 m from package, in mSv/h multiplied by 100 (mrem/h)

Basis for carrier segregation of packages, and limit exposure of members of public and transport workers

- Radiation level limits at surfaces
 - Considers doses to worker, public and film
- Criticality safety index
 - Limiting accumulation of packages containing fissile material
 - See 10 CFR 71.22, 71.23. and 71.59

- Exclusive use
- Relaxation of normal transport requirements
- Additional controls in place to assure safety
 - ► Lower packaging requirements for LSA/SCO
 - ► Higher dose rates from packages
 - ► Higher CSI for fissile shipments

- **Labels**
 - Packages assigned to a category
- Markings
 - Affixed to outside, durable
- Placards



Package category – Hazard Communication

- Routine transport consideration
- Label
 - White-I Handled with no restrictions
 - ➤ Yellow-II, Yellow-III dose assessment necessary, with segregation, dose limits, constraints considered

Labeling [§172.403]

Label	Surface Radiation Levels [mSv/h (mrem/h)]	TI
White I	Up to 0.005 (0.5)	0
Yellow II	>0.005 – 0.5 (0.5-50)	>0 - 1.0
Yellow III	>0.5 – 2 (50-200)	>1 -10
Yellow III (Exclusive Use)	>2 – 10 (200-1000)	>10

Markings

Convey information in event of loss of control of package

- ► Consignor/consignee
- UN number (aids in emergency response)
- Proper shipping name
- Mass (if >50 kg), to aid in assuring proper handling
- Package type

Placards

- Displayed on large freight containers, tanks, rail cars, road vehicles
- Displayed on all four sides
- Display on white panel with black border (Highway route controlled quantity)

Hazard communication

- Display of labels, markings, placards not required for all shipments
- Depends on package type
- ► Whether shipped exclusive use or not
- Package size

Conclusion

- Questions/Comments
- ► Contact

Sean M. Austin, CHP
Plexus Scientific Corporation
7130 Minstrel Way, Suite 215
Columbia, MD 20145
Sean.Austin@plexsci.com
443-979-7231