Exceptional service in the national interest

What is a Nuclear Weapon?

Scottie Walker, PhD, CHP

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-5981C.

Photos Courtesy of Sandia National Laboratories Slim Pickens Courtesy of Columbia Pictures

Objectives

- Describe what constitutes a generic nuclear weapon.
- Discuss nuclear properties and physics associated with nuclear weapon operation.
- Discuss important differences between nuclear reactors and nuclear weapons.
- Compare and contrast energy release in weapons throughout human history.
- Explain basic nuclear weapon designs and function.

What is a Nuclear Weapon?

- Explosive Device
- Destructive force is derived from the release of binding energy in the nucleus
 - Fission
 - Fission and Fusion
- Commonly referred to as:
 - Atomic Bombs or Weapons
 - Thermonuclear Weapons or Hydrogen Bombs

Properties and Mechanisms that Support Nuclear Weapon Operation

NUCLEAR FISSION

 \bigcirc

Several Neutrons Ejected

Start with a Large Nucleus ...

... and a Single Neutron

Smaller Nuclei Result (Radioactive Products)

Fission Products

Fission Energy Density (J/gm)

$6.02 \cdot 10^{23}$ fissions	180 MeV	1 Joule	- 74 CI/a -	$7 \Lambda T I / h a$
236 grams	fission	$6.24 \cdot 10^{12} MeV$	= 74 G/g =	74 I J / K Y

Suitable Nuclear Materials

- Special Nuclear Materials
 - Pu
 - ²³³U
 - ²³⁵U
 - ³H (tritium)

- Fissile Materials
 - Fissionable
 - Neutron requires no kinetic energy
 - e.g. ²³⁹Pu
- Fissionable Materials
 - Fissionable
 - Neutrons requires a threshold kinetic energy
 - e.g. ²³⁸U

Critical Mass

- The least amount of fissionable material that will allow a selfsustaining nuclear chain reaction, or criticality.
- The critical mass depends on
 - Isotope
 - Chemical form
 - Geometry
 - Material
 - Reflector
 - Density

Energy and Mass Equivalence

- Einstein's Relation
 - E = mc²
 - We're more interested in $\Delta E = \Delta mc^2$
 - 1 amu = 931.5 MeV
- Mass difference produces energy release

$$\Delta M = M_{parent} - (M_{fission \, frags} + M_{ejected \, neutrons})$$

Total fission (or fusion) energy released is called the *Q-value* of the reaction

$$Q = \Delta m c^2$$

Binding Energy – Splitting or Forming In Sentia the Nucleus

- When the nucleus is formed, some of their mass is converted to energy and released.
- This energy released is called the Binding Energy (BE) of the nucleus.
- It's reversible--to completely disassociate the nucleus, you need to supply Energy = BE
 - The higher the BE, the lower the energy state on the diagram above

Curve of Binding Energy

Fission Chain Reaction

Relate to population "explosions" Fission = birth

 $v \sim$ fertility = 2-3 for stable pop.

Capture = death w/o fission

Leakage = system loss

In a nuclear bomb the total number of fissions grows exponentially

- generation = one birth death cycle of the neutrons
- Since the fission process creates v neutrons per fission, an explosive chain reaction is possible.

Multiplication Factor (k)

k = # of fissions per fission in the previous generation

k = 2 in the picture

k – depends on material and geometry of system

- 3 possible situations for k
 - K < 1 subcritical
 - K = 1 critical
 - K > 1 supercritical

Fission Chain Time

Key difference between a nuclear reactor and nuclear weapon is the generation time:

- Reactor power τ ~tens of seconds
- Weapon τ ~10's µs

Mean fission generation time (τ) - the average time between when a neutron is "born" in fission and when it causes another fission in the next generation. $\tau = 10^{-8}$ sec (1 shake) for weapons.

Fission Generation Rate Factor (α)

- Alpha (α) measures the "potential" growth rate, \dot{N} , in the neutron population.
- But you need a starting, free neutron to initiate the chain!

 α = the net increase in number of fission neutrons per fission neutrons in the previous generation per unit time:

$$\alpha = \frac{k-1}{\tau}$$

So the growth rate at any instant is just alpha times the neutron population at that instant:

$$\dot{N} = lpha \cdot N$$

Fission Growth

 $N = \alpha \cdot N$

 $N = N_0 \cdot e^{\alpha \cdot t}$

 $\alpha \cdot t$ = number of generations (g)

Energy Buildup in a Fission Device

Number of Generations	Fissions <i>N</i> = e ^g	Energy (TNT eq.)	Energy "density" (J/g)	Comments
0	1	0	0	
10	2.2E4			
20	4.8E8			
35	1.6E15		0.7	
39	8.7E16		39	
40	2.3E17		106	
42	1.7E18		784	
44	1.3E19	0.1 tons	6750	TNT ~ 4200 J/g
46	9.5E19	0.7 tons	4.3E4	
48	7.0E20	5.2 tons	3.2E5	Plasma
50	5.2E21	39 tons	2.3E6	
52	3.8E22	290 tons	1.7E7	
54	2.8E23	2.1 kT	1.3E8	
56	2.1E24	15.7 kT	9.4E8	1.4 %
58	1.6E25	116 kT	6.9E9	11 %
60.3	1.5E26	1.1 MT	74E9	100 %

Assuming α = 1 g/shake Most of the energy is released in the final few generations!

Sandia

Properties and Mechanisms that Support Nuclear Weapon Operation

NUCLEAR FUSION

Fusion Process

Energy from Nuclear Fusion Smaller Q value, but greater energy density

Fusion Energy Density (J/gm)

$6.02 \cdot 10^{23}$ fusions	17.6 <i>MeV</i>	1 Joule	-240 CI/a -	240 TI/ba
5 grams	fusion	$6.24 \cdot 10^{12} MeV$	-540 G/g =	540 <i>1</i> J / Ky

ENERGY RELEASE COMPARISONS

Conventional High Explosives (TNT) In Sandia Laboratories

Change in electron binding energy

- About 20 eV per chemical reaction
- Energy density about 4.2 MJ/kg

Energy Density and Yield

- Energy density of TNT = 4.2 MJ/kg
- Energy density of fission (²³⁵U, ²³⁹Pu or SNM) = 74 TJ/kg

• Ratio:
$$\frac{74x10^{12} \frac{J}{kg \, SNM}}{4.2x \, 10^6 \frac{J}{kg \, TNT}} = 17.6 \, \text{x} \, 10^6 \, \text{kg of TNT per kg of SNM}$$

Complete fission of 1 kg SNM = 17.6 kT of TNT

Energy Density (J/g) Over Time

BASIC NUCLEAR WEAPON DESIGNS

Gun-Type Nuclear Weapon

Implosion Type Nuclear Weapon

(BEFORE FIRING)

(IMMEDIATELY AFTER FIRING) THEN EXPLODES

Photo Courtesy of Sandia National Laboratories

Implosion Warhead

Sandia National Laboratories

G.

Boosted Warhead

2-Stage Thermonuclear

Sandia National Laboratories

EXAMPLE WARHEAD DESIGNS AND EQUIPMENT

Bomb and Warhead Shapes

Cruise Missile Warhead

Warheads Mounted on a Reentry System

Slim Pickens Riding a B-15

Davy Crockett

Gravity Bomb Components

QUESTIONS (THAT I'M ALLOWED TO ANSWER)?

The End

