

Quantification of Errors in Doses,

International Collaborative Study of Cancer Risk among Radiation Workers in the Nuclear Industry

Link to Abstract

Dr Isabelle THIERRY-CHEF

• Link to Menu

International Agency for Research on Cancer Lyon, France

Studies of radiation workers

Radiation workers

Characteristics of the population

- Very large, stable populations
- Well characterized external exposures
 - Generally low doses, protracted
 - \rightarrow Mainly external γ -radiation
- Detailed individual annual dose estimates
 measured in real time with personal dosimeters

... Relevant population for radiation protection

International Study

Belgium Finland France Hungary Lithuania Slovakia Spain Sweden Switzerland United-Kingdom

Study population

All workers	598,068
Main exclusions	
 Employed less than 1 year: 	113,711
 Not-monitored for external radiation: 	38,521
 Potential for substantial doses from radionuclide intake: 	39,730
 Potential for substantial doses from neutrons: 	19,041
Main study population:	407,391

Radiation types

Workers exposed to neutrons, intake of radioactivity (other than tritium)

- ... flagged and excluded from main analyses
- Problems of dose estimation
 - Inadequate technology, monitoring
 - Recording of different quantities (%ALI, ...)
 - Lack of information on chemical form, intake route, etc.

Proportion of such workers generally small (high dose group)

Study of errors in dosimetry restricted to workers exposed predominantly to "higher" energy photon radiation (100 to 3 000 keV)

Study of Errors in Dosimetry

Objectives of the Study

 Comparability of doses recorded in different facilities from the 1940 's up to now

Identification of sources of errors

 Quantification of errors to take them into account in the risk estimate

Identification of sources of errors

Dosimetry technology

- Response to energy & geometry
- Laboratory practices (dosimeter processing & reading)

Conditions of exposure

- Energy and geometry
- Other environmental factors (heat, humidity, light..)

Calibration practices

- Dosimetric quantity
- Radiation source used for calibration & factors affecting sources
- Backscatter factor

Administrative practices

- Frequency and criteria of monitoring
- Rules for below threshold doses and for missing doses

Film dosimetry

Energy response of the film (Kodak type 1)

International Agency for Research on Cancer

World Health Organization

Film dosimetry

Filters (PS-1 Dosimeter)

International Agency for Research on Cancer

Energy - keV

Study of dosimeter response

Classification by category

- Photographic dosimeters
 - → bare film
 - → one filter
 - multi-element
- ✓ TLDs
- Uncommon dosimeters

Selection for experiments

- 10 types 5 dosimeters per type
- ✓ 3 energies (118 208 662 keV)
- ✓ 3 geometries (AP ROT ISO)

Dosimeter response

118 keV

Dosimeter response

Bias - B_{energy,geometry}

Code	FILTERS	DENSITY	RESPONSE H _p (10) _a /H _p (10) _d (Bias							s factor)			
		(<i>mg</i> cm ⁻²)	118 keV				208 keV			662 keV			
			A.P.	ROT	ISO	A.P.	ROT	ISO	A.P.	ROT	ISO		
Open													
CA-1	Cd	346											
CA-2	Cd	864											
UK-1	Cd	864											
US-1	Cd	1000											
US-2	Ag	1000	3.04	2.17	1.55	1.18	1.38	1.11	1	1.03	1.04		
US-3	Pb	580											
UK-2			0.49	0.58	0.46	0.86	0.70	0.52	1.12	1.38	1.26		
UK-4	Fe + Pb +Al	250+635+124											
UK-5	Tinplate		2.40	2.09	1.73	1.24	1.22	1.12	0.87	1.05	1		
Multie	elements		0.82	1.14	1.01	0.89	1.04	0.98	0.81	1.04	0.93		
TLDs			0.86	1.09	0.95	0.92	1.09	0.98	0.89	1.07	0.94		

Extrapolation of results

Old dosimeters

Uncertainties on dosimeter response

- Uncertainty related with the conduct of the experiments including:
 - *Reproducibility of position of dosimeters Uncertainty in dose delivered*

 \ldots K_{experiment} =1.1

Uncertainty related to dosimeter response

 Based on the 5 dosimeters per type irradiated at each energy and for each geometry

... K_{response}

Condition of exposure

Nuclear power plants - Swiss power plants
 Mixed activity facilities - Saclay – France

Expertise

✓ <u>Predominant energies</u> :

% of average dose due to photons in 3 energy ranges: 0-100, 100-300, 300-3000 keV

Predominant geometries:

% of average dose due to 3 geometries of exposure : A.P., rotational or isotropic

Expert evaluation in Saclay

Waste sector		INB-1									NB-2	2		
	Energy (keV)			Geometry				Energy (ke		keV)) Geometr		try	
Activity	Number	0-100	100-300	300-3000	A/P	Iso	Rot	Number	0-100	100-300	300-3000	A/P	Iso	Rot
Health physics	3	-	20	80	-	100	-	3	-	-	100	-	100	
cleaners	2	-	20	80	-	100	-	1	-	-	100	-	100	
Maintenance	2	_	20	80	-	100	-	2	_	30	70	50	50	-
Decontamination	15	-	20	80	20	80	-							
Waste treatment								3	-	-	100	80	20	_
Waste reception treatment								3	33	33	33	_	100	_
Conditining of combustible w	aste							4	-	-	100	100	-	-

Conditions of exposure – Summary

f(energy) & f(geometry)

Coefficients	E	ENERGY -k	eV-	GEOMETRY			
	0-100	100-300	300-3000	A.P.	ISO	ROT	
NPP	0	0.1	0.9	0.5	0.5	0	
Variations between workers	0-0.01	0.05-0.2	0.8-1	0.1-0.8	0.2-0.9	0	
Mixed activities	0	0.2	0.8	0.5	0.5	0	
Variations between workers	0	0.15-0.25	0.75-0.85	0-0.6	0.4-1	0	
Variations between installat.	0	0.15-0.25	0.75-0.85	0.4-0.55	0.45-0.6	0	

International Agency for Research on Cancer

Dosimetric bias

- $B_{d} = Exp[f(100-300)* f(AP)* Ln(B_{100-300,AP}) +$
 - f(100-300)* f(iso)* Ln(B_{100-300,iso}) +
 - f(300-3000)* f(AP)*Ln(B_{300-3000,AP}) +
 - f(300-3000)* f(iso)*Ln(B_{300-3000,iso})

Related uncertainties

- *K*_{experiment}
 *K*_{response}
 *K*_{exposure}
 Uncertainty related to conditions of exposure, takes into
 - account the response of dosimeter in "extreme" conditions
 - the upper and lower bounds provided by the experts

International Agency for Research on Cancer

Kd

Dosimetric factors – Hp(10)

Facility	Facility type		Calendar	Dosim	Dosimeter		100-300		300-3000		Kd		
	f ₁₀₀₋₃₀₀	f ₃₀₀₋₃₀₀₀	f _{AP}	f _{ISO}	Period			AP	ISO	AP	ISO	H _p (10)	H _p (10)
1-Mixed	0.2	0.8	0.5	0.5	1950-56	Bare	Film	3.27	4.82	0.9	0.99	1.26	1.40
Activities					1957-66	E-1	Film	1.17	1.17	0.68	0.73	0.78	1.12
					1967-95	E-6	Multi.	0.63	0.62	0.81	0.81	0.77	1.11
					1985-95	E-9	TLD	0.86	0.83	0.78	0.82	0.81	1.15
2 -NPP	0.1	0.9	0.5	0.5	1968-82	E-3	Film	1.80	1.61	0.90	0.99	1.00	1.12
					1982-97	E-4	Film	0.73	0.56	0.90	0.99	0.91	1.12

Conversion to organ dose

Conversion	100-3	800 keV	300-3000 keV			
Organ dose	AP	ISO	AP	ISO		
RBM	0.52	0.77	0.63	0.79		
Colon	0.79	0.69	0.85	0.73		
Lung	0.74	0.86	0.82	0.85		

Uncertainty factor K_{organ}=1.103

Dosimetric factors – organ dose

ity	Per	iod	Dosi	meter	B _d	K _d	B _d	K _d	B _d	K _d	B _d	K _d
Facil					H _p (10)	H _p (10)	lung	lung	RBM	RBM	colon	colon
1	50	56	Bare	Film	1.26	1.40	1.53	1.43	1.83	1.22	1.62	1.85
	57	66	E-1	Film	0.78	1.12	0.95	1.16	1.14	1.19	1.01	1.27
	67	95	E-6	Multi.	0.77	1.11	0.94	1.16	1.12	1.29	1.00	1.18
	85	95	E-9	TLD	0.81	1.15	0.98	1.18	1.18	1.27	1.04	1.25
2	68	82	E-3	Film	1.00	1.12	1.21	1.19	1.44	1.37	1.28	1.15
	82	97	E-4	Film	0.91	1.12	1.09	1.16	1.31	1.17	1.16	1.26

Calibration factors

Backscatter
 Calibration source
 Factors affecting sources

cility	Period		Backscatter		Calibr sou	ration rce	Othe	r factors	Final cal. factors		
Fa	Start	End	B _{back}	K _{back}	B _{source}	K _{soucrce}	B _{fact}	K _{fact}	B _c	K _c	
1	67	97	1.06	1.05	1	1	1	1.05	1.06	1.07	
2	45	58	1.06	1.05	1	1.2	1	1.05	1.06	1.22	
	59	97	0.96	1.04	1	1	1	1.05	0.96	1.07	

Overall bias and uncertainty

Response of dosimeters to conditions of exposure

 $\checkmark B_d (B_{d, Hp(10)} B_{d, lung} B_{d, RBM} B_{d, colon})$ $\checkmark K_d (K_{d, Hp(10)} K_{d, lung} K_{d, RBM} K_{d, colon})$ Calibration practices

 $\begin{array}{c} \checkmark & B_c \\ \checkmark & K_c \end{array}$

Overall uncertainty ✓ In K= 1.96 $√(Σ_i S_i^2)$]

Overall bias and uncertainty

ity	Per	eriod Dosimeter		В	K	В	K	В	K	В	K	
Facil					H _p (10)	H _p (10)	lung	lung	RBM	RBM	colon	colon
1	50	56	Bare	Film	1.33	1.48	1.62	1.51	1.94	1.33	1.72	1.69
	57	66	E-1	Film	0.83	1.26	1.01	1.28	1.21	1.31	1.07	1.22
	67	95	E-6	Multi.	0.82	1.13	1.00	1.17	1.19	1.30	1.06	1.07
	85	95	E-9	TLD	0.86	1.17	1.04	1.20	1.25	1.28	1.10	1.08
2	68	82	E-3	Film	0.96	1.14	1.16	1.21	1.38	1.38	1.23	1.29
	82	97	E-4	Film	0.87	1.14	1.05	1.17	1.26	1.19	1.11	1.18

$CF = B/(exp[S^2/2])$

Dose distribution

Fig 1 Distribution of cumulative radiation doses among workers included in the analyses

Average cumulative dose = 19.4 mSv

Characteristics of the cohort

Average age at end of follow-up	46.2
Average age at first exposure	30.7
Average length of follow-up	12.7
% of deaths	5.9
Number of deaths	24,158
Number of cancer deaths	6,794

Some important results

Based on adjusted dose estimates – colon doses

Inclusion/exclusion	ERR/Sv	90% confidence interval
All countries included	0.97	0.27 – 1.80
Canada excluded	0.58	0.1 – 1.39
UK excluded	1.25	0.26 - 2.43

Leukemia excluding CLL

✓ Based on adjusted dose estimates – RBM doses
✓ ERR= 1.93 per Sv (90% CI < 0 to 7.14)

International Agency for Research on Cancer

Main publications on the 15 country study

Methods papers

✓ Study of Errors in Dosimetry → Thierry-Chef et al. (2007) Radiat. Res. 167: 380-395 Methods and descriptive results Vrijheid et al. (2007) Radiat. Res. 167: 361-379 Method for estimating uncertainties from shared errors → Stayner et al. (2008) Radiat. Res. 168: 757-763 **Results** papers ✓ Short paper : First results → Cardis et al. (2005) Br. Med. J. 331:77 Estimates of radiation-related cancer risks → Cardis et al. (2007) Radiat. Res. 167: 361-379 ✓ Mortality from diseases other than cancer Vrijheid et al. (2007) Int. J. of Epi Risk of chronic lymphocytic leukemia → Vrijheid et al. (2008) Radiat. Res. 170:661-665

Conclusions

- Study of errors in dosimetry focused on photon radiation
- Areas of interest for future work
 - ✓ Neutron
 - Internal contamination
 - Administrative practices
 - Need to explore the impact on doses
- Need for follow-up studies
 ✓ Age of the population (still young)

Acknowledgement

Dr Elisabeth Cardis

- The Radiation Group at IARC
 - ✓ Richardson DB, Pearce MS, Vrijheid M, Tardy H, Combalot E
 - The Dosimetry Subcommittee members
 - Marshall M, Fix JJ, Bermann F, Gilbert ES, Hacker C, Heinmiller B, Utterback D, Cowper G
- The Dosimetry and Medical Radiation Physics Section of the IAEA
 ✓ Andreo P, Pernicka F
 - The collaborators from the participating facilities
 - Murray W, Bernar J, Deboodt P, Eklof M, Griciene B, Holan K, Hyvonen H, Kerekes A, Lee M-C, Moser M, Delacroix D

