Radon Dosimetry: Current Status

Alan Birchall and James Marsh

55th Annual Meeting of the Health Physics Society Salt Lake City, Utah 27 Jun – 1 Jul (2010)

- Link to Abstract
- Link to Menu

Radon Dosimetry: Current Status

Structure

- 1. Introduction
- 2. Dosimetric Approach
- 3. Epidemiological Approach
- 4. Are the Two Approaches Compatible
- 5. Current Developments

1. Introduction *What is radon?*

- Radioactive noble gas
- From uranium-238 decay chain
- 3.82 day half-life
- Traces of uranium in all rocks and soils
- May diffuse several metres from where it is formed
- Emerges into open air or into houses

Formation of radon progeny

1. Introduction *Evidence for the risk from radon exposure*

Miners in high-radon mines

Animals exposed to radon

People exposed at home

Why is it important to estimate the risk?

- Radon is the number 1 cause of lung cancer among non smokers.
- Radon causes 100x more deaths than carbon monoxide poisoning
- Radon accounts for the largest component of naturally occurring background dose.

Why is it important to estimate the risk?

Why is it important to estimate the risk?

- \approx 2500 deaths per year in UK
- \approx 20,000 deaths per year in the US
- \approx 0.5 million per year world-wide

"The biggest geological cause of deaths... including earthquakes!"

Units: concentration

Radon gas concentration

- pCi/L
- Bq m⁻³

with radon progeny in equilibrium with 100 pCi/L of radon gas is about 1WL

The PAEC associated

Potential Alpha Energy Concentration (PAEC)

1 Working Level (WL) is any combination of short lived decay products in 1 litre of air which will ultimately emit 1.3 10⁵ MeV of alpha energy.

1. Introduction *Units: exposure*

Annual exposure of radon gas in a home of

230 Bqm⁻³

= 1WLM

Radon gas concentration

• Bq $m^{-3}h$

Potential Alpha Energy Concentration (PAEC)

1 Working Level (WLM) is an exposure to 1 WL for 1 month (170 h).

1. Introduction Health Protection Agency How can the risks from radon be assessed? **Epidemiological Approach Dosimetric Approach** Exposure to radon (1 WLM) Lung dose Risk model Effective dose **Excess Risk** © HPA Centre for Radiation, Chemical and Environmental Hazards - Radiation Protection Division. Formerly the National Radiological Protection Board freeho

1. Introduction Dosimetric approach

Radon has always had its own publications

All radionuclides (except radon)

Radon

1. Introduction *Dosimetric approach*

The ICRP 30 lung model was never really designed for short lived nuclides

The ICRP-66 model was an attempt to rectify this situation, and bring radon in line with other radionuclides.

2. The Dosimetric Approach

Dosimetric approach

Health Protection Agency

ICRP 66 was designed to deal with short lived radionuclides, so does this change things?

Deposition

0.1

Particle Deposition in Respiratory Tract

10 100 Particle diameter (nm) 1000

10000

2. The Dosimetric Approach

Dosimetric approach

Exposure 1 WLM Lung model parameters Ab Dose to bb, BB, AI $A_i = 0.333, W_R = 20$ Eq Lung Dose 125 mSv $W_{T} = 0.12$ **Effective Dose** 15 mSv Risk=0.112/Sv, DDREF=2 **RISK** 8.4 x 10⁻⁴

Unattached fract 1% Eq'm factor, F=0.4 Unattached size .0011 \square m Attached size 0.25 \square m Breathing rate 1.2 m³h⁻¹ Absorption t_{1/2} 10 h <u>Morphometry ICRP 66</u>

3. The Epidemiological Approach Need a risk model

Exposure 1 WLM

Risk

Data from amalgamated underground minor cohorts

Multiplicative relative risk model with a reduction for time since exposure (ICRP 65)

Reference population J, PR, US, UK, CH (ICRP-60)

2.8 x 10⁻⁴

4. Are the two approaches compatible? A comparison

4. Are the two approaches compatible? Uncertainties

Sarah Darby and Sir Richard Doll

Radiation Protection in Australia 8 (4) (1990)

".... current estimates about the size of the risk associated with exposure in houses of the order of 20 Bq m⁻¹ may be too high or they may be too low by a factor of two"

4. Are the two approaches compatible? Uncertainties

Frequency distribution of E/Pp

Frequency

4. Are the two approaches compatible? The ICRP resolution

ICRP 66 (p101, para 356)

"In the case of exposure to radon progeny, since estimates of lung cancer risk for workers (and members of the public) can be made reliably from epidemiologic studies relating lung cancer in miners to radon exposure, the Commission does not recommend the ... [dosimetric approach]"

4. Are the two approaches compatible? The ICRP resolution

4. Recent Developments

5. Recent Developments *Dosimetry*

Marsh J W, Birchall A and Davis K. *Comparative dosimetry in homes and mines: estimation of K-factors*. Presented at the 7th Internatiuonal Symposium on the Natural Radiation Environment (NRE-VII), 20-24 May, 2002, Rhodes, Greece

> Best estimate of all the latest aerosol parameters

 Best estimate of all the latest lung model parameters

12.5 mSv/WLM

5. Recent Developments *Risk per Sv*

	ICRP Publication 60 (1991)		
	Cancer	Hereditary	Total Det ⁽¹⁾
Worker	4.8	0.8	5.6
Public	6.0	1.3	7.3
	ICRP Publication	103 (2007)	
	Cancer	Hereditary	Total Det ⁽¹⁾
Worker	4.1	0.1	4.2
Public	5.5	0.2	5.7

⁽¹⁾ Percent risk per Sv

© HPA Centre for Radiation, Chemical and Environmental Hazards - Radiation Protection Division. Formerly the National Radiological Protection Board in physical P

5. Recent Developments

Epidemiology

Before 2000					
Reference	Risk Model	Population ⁽¹⁾	Risk / WLM		
BEIR IV (1988)	BEIR IV	US	3.5 10 ⁻⁴		
ICRP-65 (1993)	ICRP65(GSF)	ICRP-60	2.8 10 ⁻⁴		
	After 200	00			
EPA (1999)	BEIR VI ⁽²⁾	US	5.1		
EPA(2003)	BEIR VI ^(2 and 3)	US	5.4 10 ⁻⁴		
Tomasek(2008)	BEIR VI ⁽²⁾	ICRP-103	5.3 10 ⁻⁴		
Tomasek(2008)	Czech/French	ICRP-103	4.4 10 ⁻⁴		

⁽¹⁾ males/females smokers/non-smokers
⁽²⁾ exposure-age-concentration risk model
⁽³⁾ exposure-age-duration risk model

In a recent statement, ICRP has recommended a value of 5.0 10⁻⁴ for radiation protection purposes.

5. Recent Developments

5. Recent Developments *Dose coefficients*

ICRP

Using a revised value of 5 x 10⁻⁴ per WLM for the lung cancer risk...

and equating with total detriment from ICRP-103

Workers	4.2 x 10 ⁻² Sv ⁻¹	
Public	5.7 x 10 ⁻² Sv ⁻¹	

12 mSv WLM⁻¹ 9 mSv WLM⁻¹

NCRP

NCRP SC-6-2 have recently updated NCRP Report 93 *"lonizing Radiation Exposure of the United States Population"*. The new document, NCRP Report 160 recommends a value of 10 mSv WLM⁻¹ for radon exposure

• For the first time in a long time we are seeing harmonisation in the way radon is treated, from a radiation protection viewpoint.

• This lends weight to the system of radiological protection for other radionuclides (especially airborne alpha emitters).