Errors and Uncertainties in Radiation Dose Reconstruction for Epidemiology: Approaches and Challenges

Daniel J. Strom, Ph.D., CHP Pacific Northwest National Laboratory Richland, Washington USA +1 509 375 2626 <u>strom@pnl.gov</u>

Paper TAM-C.3 American Academy of Health Physics Session "Radiation Dose Reconstruction for Epidemiology" 55th Annual Meeting of the Health Physics Society, Salt Lake City, Utah, 2010 June 29

Link to Abstract

Link to Menu

Proudly Operated by Battelle Since 1965

Outline

- Classical (measurement) and Berkson (grouping) errors
- Shared, unshared, and mixed shared-unshared uncertainties
- Autocorrelation of uncertainty within individuals
- Multiple dose history realizations
- Quantitative uncertainty analysis for external irradiation
- 2-stage Monte Carlo approach
- Creating distributions of "possibly true" doses

Berkson and Classical Errors and Uncertainties

- In 1950, Joseph Berkson, M.D. pointed out the differing effects of two kinds of errors on regression analysis
- *Classical* or *measurement error* is well understood in metrology
- A different kind of error, that made when assigning the same value to all members of a group, became known as a "*Berkson error*" or *grouping error*
- In health physics, we create Berkson errors when we use the same value or same assumptions for every member of a group
 - Assume same background count rates for different samples
 - Use Reference Man & ICRP dosimetry models for everyone
 - Assign the same radon progeny exposure to everyone in a mine

Comparing and Contrasting

Classical errors	Berkson errors
• are independent of the measurand	• are independent of the observed, assigned, or reconstructed value
 result from imprecise measurement 	• result from using a single value to represent a group
• result in the variance of the observed, assigned, or reconstructed values being larger than the variance of the measurands	• result in the variance of the measurands being larger than the variance of the observed, assigned, or reconstructed values
• cause " <i>bias towards the null</i> " in <i>linear</i> regression analysis	• if group averages are unbiased, cause <i>no bias</i> in <i>linear</i> regression analysis

Conclusions (3 Uncertainty Types)

- Berkson uncertainties affect the slope of a linear doseresponse relationship differently from classical uncertainties
- 1. Classical uncertainties cause bias towards the null
- 2. Berkson uncertainties may lead to
 - little bias for linear models
 - significant bias for nonlinear models
- 3. Berkson uncertainties with residual bias may result in bias towards or away from the null

Shared and Unshared Errors and Uncertainties

- Random, uncorrelated measurement errors "cancel" each other out when measurements are combined
- Systematic or correlated measurement errors do not cancel each other out when measurements are combined
- When an uncertain parameter applies to all measurements or model calculations, its use results in *shared errors*
- Examples of sources of shared errors
 - models
 - dosimetric phantom
 - biokinetic model
 - environmental transport model
 - model parameters
 - dosimeter calibration factor
 - solubility determination for an aerosol

Proudly Operated by Battelle Since 1965

Handling Shared Errors and Uncertainties

- When modeling doses to a population, *shared uncertainties* must be handled separately from *unshared uncertainties*
- One approach is to use 2-stage Monte Carlo modeling
 - Pioneered by the Hanford Environmental Dose Reconstruction (HEDR) project in the early 1990s
 - Now considered state-of-the-art for radiation epidemiology
- The *multiple dosimetry realizations* Monte Carlo procedure generates 100s or 1000s of sets of *"possibly true doses"*
 - First, values of shared uncertain parameters are randomly selected, using the same value for every person for whom the value is shared
 - Second, values of unshared uncertain parameters are randomly selected for individuals

A Single Dose Realization

Pacific Northwest

6

~10

<10

 24×10^{9}

rad type

source

Total

data provenance

A Series of J Dose Realizations

Proudly Operated by Battelle Since 1965

What Does the Dosimetry Product Look Like?

- Each realization will result in 1 table for each of type of radiation
- Each row will be labeled by
 - individual *i*
 - year y
- Each row will contain column entries for doses to organs *o*
- There are no entries for uncertainty, because uncertainty is implicit in the multiple realizations

Autocorrelation over Time (Within-Individual Correlation)

- Suppose annual doses to tissues and organs for individuals are needed
 - epidemiology
 - compensation
- Doses from one year to the next may be correlated
 - if a person had an acute intake of a tenaciously-retained radionuclide
 - if a person had the same job or job title (for job exposure matrix dose reconstruction)
- Bias in dose from one year to the next may be correlated
 - if a person had posterior-anterior exposure but anteriorposterior exposure was assumed
 - if an individual was a smoker and nonsmoker was assumed
 - if an individual had a poor respirator fit each year

Conclusions

- Epidemiology and biostatistics have matured
- Uncertainties must be handled correctly
 - Berkson (grouping) and classical (measurement)
 - Shared, unshared, mixed
 - Correlations among parameters
 - Autocorrelation
- The current approach requires multiple realizations of possibly true doses
- Dosimetry scientists, biostatisticians, and epidemiologists all must change how they do business
- Uncertainties on the excess relative risk per gray (*ERR*/Gy) will be more realistic
- Disaggregating experimental uncertainty from population variability is the next challenge (Paper WAM-C7)

Acknowledgments

- This presentation builds on a decade and a half of work by Russian and US researchers too numerous to list
- This work is funded by the U.S. Department of Energy under the auspices of the US-Russian Federation Joint Coordinating Committee for Radiation Effects Research (JCCRER)
- <u>http://www.hss.energy.gov/HealthSafety/IHS/ihp/jccrer.html</u>
- More detail on uncertainty in dosimetry can be found at <u>http://www.pnl.gov/bayesian/strom/strompub.htm</u>

