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Needs of the Epidemiologist

 For this talk, the “customer” is the
epidemiologist
— or statistician analyzing epidemiologic
data

e Other users of these doses may have
different needs




Epidemiologic Studies of
Persons Exposed to Radiation

o Japanese A-Bomb Survivor Studies
 Medical Radiation Studies
 Occupational Radiation Studies

e Environmental Studies




Why are We Doing These Studies?

 Develop the quantitative information
needed to estimate risks from radiation
exposure in other populations

* Increase our understanding of radiation
carcinogenesis

— How do dose-rate, dose protraction, LET, age,
gender, and other risk factors affect risk?




Today’s Studies

 Japanese A-bomb survivors

— Premier study for quantifying risks from
acute low-LET radiation

e Other studies address:
— Dose-rate and protraction of dose
— Risks from alpha emitters and 1-131




Role of Doses in Epidemiology

 Allow us to explore the dose-response
relationship
— Shape of dose-response
— Quantify risk as a function of dose

Linear (and linear-quadratic) dose-
response plays important role in radiation
epidemiology

Relative risk =1 + 3 dose where B is
excess relative risk (ERR) per unit of dose




Japanese A-bomb Survivor Solid Cancer
Incidence: Excess relative risk

Low Dose Range
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Role of Doses in Epidemiology

 Allow us to investigate the modifying
effects
— Gender
— Age at exposure
— Dose-rate
— LET

« Compare risks (ERR/Gy) across
— Subgroups (male versus female etc.)

— Studies (e.g., acute versus protracted
exposure)




Excess Relative Risk (ERR) per Gy
for Leukemia excluding CLL

15-country study nuclear worker study:
1.9 (<0, 8.5)

A-bomb survivors*:

Linear 3.2 (1.6, 5.7)
Linear-quadratic 1.5 (<0, 5.3)

*Estimates for males exposed at ages 20-60 Cardis et al. 2005




Role of Doses in Epidemiology

 Allow analyses that combine data from

several studies that address a common
issue

« Examples:

— Breast cancer in A-bomb and medical studies
(Preston et al. 2002)

— Thyroid cancer in A-bomb and medical studies
(Ron et al. 1995)

— Lung cancer in 11 cohorts of underground
miners (BEIR VI 1999)

— Nuclear workers in 15 countries
(Cardis et al. 2005, 2007)




Pooled breast cancer incidence analyses

Cohort Exposed cases Mean dose (Gy)

Massachusetts fluoroscopy

Original 71 1.0 (0.02 - 6)

Extension 49 0.7 (0.02 - 5)
New York mastitis 52 3.8 (0.6 — 14)
Rochester thymus 22 0.7 (0.02 - 7.5)
Benign breast disease 5.8 (0.02 — 50)
Gothenburg hemangioma 59 0.2 (0.02 — 22)
Stockholm hemangioma 97 0.5 (0.02 — 35)
A-bomb survivors 0.3 (0.02 - 5)

Total

Preston et al. 2002




Which dose or measure of exposure?

 Organ dose is usually best choice for
epidemiology.
— Most biologically relevant

— Allows comparison of risks across studies, and
types of exposure (e.g. alpha versus gamma)

— Allows use of study results to predict risks in
other populations

e Some exceptions

— For example, use of Bg/m?3in residential radon
studies




Dosimetry Needs for Epidemiology

* |deal: Unbiased estimates of organ dose
— Rarely possible to be certain there is no bias

 Minimize differential bias
— By disease status
— By magnitude of dose
— By subgroups (e.g. age, sex)
— Across studies




Dose Measurement Uncertainties

 Dose estimates subject to uncertainties

 In most studies, dose estimation is
retrospective

« Complex systems often needed to
estimate dose




Possible Effects of Errors in
Dose Estimates

 Reduction in statistical power for
detecting dose-response relationships

e If errors not accounted for —
— Bias in estimates of linear risk coefficients

— Distortion of the shape of the dose-response
function

— Underestimation of uncertainty




Types of error

 Impact on dose-response analyses depends
on distinctions between --

e Classical errors and Berkson errors

 Shared errors and Errors that are independent
for different subjects




Classical Error
(Measurement Error)

Error that arises from an imprecise
measuring device

Error is independent of true dose
(Estimated dose varies about true dose)

Adjustment needed to avoid distortion of
dose-response

Variance of estimated doses larger than
variance of true doses




Examples of Classical Errors

 Errors in readings of film badge
dosimeters

 Errors in bioassay measurements used in
estimating internal doses

 Errors in questionnaire data used in
estimating doses




Berkson Error
(Grouping Error)

Error that results when
— Single mean dose used to represent group

— Same model is used to estimate doses for a
group

Error is independent of estimated dose
(True dose varies about estimated dose)

Little distortion in linear dose-response

Variance of true doses larger than variance
of estimated doses




Shared Errors

 Also known as systematic errors

« Examples

— Errors in the source term for an environmental
exposure

— Errors in doses assigned to groups of subjects

— Errors in parameters of models used to convert
measurements to doses




Statistical approaches for accounting
for dosimetry uncertainties

What they can’t do

 Improve power and precision of estimated
risk coefficients

What they can do
 Avoid misleading results
e Correct biases in risk coefficients

e Widen confidence intervals to reflect
dosimetry uncertainties




Statistical approaches for accounting
for dosimetry uncertainties

« Maximum likelihood
 Regression calibration

 Multiple realizations




Full maximum likelihood

« Regression model : Relates disease to
true dose
— Linear relative risk model a common choice

e Measurement model: Relates estimated
doses (z) to true doses (x)

 Exposure model: Specifies distribution of
true doses (x)

Clayton 1990




Conditional maximum likelihood

o Start with full likelihood and integrate out
true doses to form likelihood based on
disease outcome and estimated doses

 Markov Chain Monte Carlo (MCMC) useful
in performing computations

 Has been applied to data from European
residential radon study (Fearn et al. 2008)




Regression Calibration

Replace the estimated doses with
E (true dose|estimated dose) = E(x|z)

Easy to apply once have the E(x|z)

Leads to unbiased estimates of linear risk
coefficients.

Limitations
— An approximation for non-linear models

— Uncertainty in risk estimates may be
underestimated




Regression Calibration Examples

e A-bomb survivors (Pierce et al. 1990; 2009)
— Increased slope by 10%

 European residential radon case-control

studies
(Reeves et al. 1998; Darby et al. 1998; Fearn et al. 2008)

— Increased slope by 100%

e Colorado uranium miners (stram et al. 1999)

— Decreased magnitude of inverse exposure-rate
effect




Multiple Realizations

 Use Monte Carlo methods to generate N
realizations of the true doses based on
observed data and assumptions about
uncertainties

 Take account of correlations (shared errors)

« Berkson process

“We take as our starting point a Berkson model ...”
(Stayner et al. 2007; Stram and Kopecky 2003)

 Preliminary work needed to address classical
error (regression calibration)




Multiple Realizations

« What do epidemiologists and statisticians do
with the results?

« Maximum likelihood: Estimating likelihood
function for each realization and then
average

 Extremely computer intensive




Error Structure

Identify sources of error

Nature of the error from each source
— Classical or Berkson?
— Shared or unshared?

Describe the magnitude and distribution of
error from each source

— Subjective judgments often required

An uncertainty interval for the dose of each
subject is not enough!




Dosimetry Uncertainties

* Increasingly, efforts are being made to
take account of dosimetry uncertainties in
epidemiologic studies

 Requires understanding of error structure

— Lots of communication between
dosimetrists and statisticians

« Accounting for dosimetry uncertainties in
complex situations remains challenging




Examples where dose estimation
errors have been taken into account

A-bomb survivors (Pierce et al. 1996; 2008)

Residential radon exposure (Reeves et al. 1998;
Fearn et al. 2008)

Utah fallout study (Thomas et al. 1999; Mallick et al. 2002;
Li et al. 2007)

Underground miners (Stram et al. 1999)
ORNL nuclear workers (Stayner et al. 2007)

Hanford fallout study (Stram and Kopecky 2003;
Hoffman et al. 2007)

Tinea capitis patients (Schafer et al. 2001; Lubin et al. 2004)
Chornobyl thyroid study (Kopecky et al. 2006)




Summary:
Needs of the Epidemiologist

 Unbiased estimates of organ dose

 Minimize differential bias by disease
status, dose magnitude, subsets, or
studies

e Collaboration of dosimetrists and
statisticians needed

— Particularly to address dose uncertainties






