Descriptions of the Health Physics Program at The University of Tennessee

Larry Miller

52nd Annual Meeting of the Health Physics Society

Status of Academic Programs and Student Recruitment

July 10, 2007

Overview of Presentation

- Background
- Academic Programs in Health and Medical Physics
- Research Topics and Students Graduated
- Recruitment, Funding and Accreditation
- Distance Education
- Observations and Opinions

Background

- General interest for ORNL since early 1980's
- Departmental decision to establish a concentration of courses in December of 1987
- Academic program based on conversations with Jim Turner
- Classes offered at the ORAU facility from 1988 through 2001
- New enrollments were about 20 each year through the mid 90's
- Current HP class enrollments are about 10 to 15

Academic Program in Health Physics

Radiation Protection

(NE-551; Turner, Groer, Townsend)

- Radiological Assessment and Dosimetry (NE-552; Cloutier, Miller)
- Radiation Measurements Laboratory (NE-550; Frame, Simpson and Miller)
- Radiation Biology

(Special Topic, Byrne)

Some Special Topics Classes Offered (NE-597 and NE-621)

- Radiation Biology (taught every two years by Byrne)
- Internal Dosimetry (taught several times by Eckerman, Miller)
- Radiation Risk Assessment (taught several times by Groer, NE-553)
- Radiological Characterization of Facilities Undergoing Decontamination and Decommissioning (Abelquist, Frame)
- Statistics for Health Physicists (Downing)
- Uncertainty Analysis (taught several times, Miller, Hoffman)
- Charged Particle Transport (taught several times, Townsend)

Radiation Protection (NE 551)

- Text
 - Anderson, Absorption of Ionizing Radiation, with Turner's book as a supplement
- Topics
 - Fundamental radiation protection concepts and definitions
 - Physical interactions of heavy charged particles, electrons, photons and neutrons and mechanisms of energy loss
 - Chemical and biological effects of radiation
 - Current radiation protection standards and practices

Radiological Assessment and Dosimetry (NE-552)

- Text
 - Till and Meyer
- Topics
 - Air, Water and Ground Transport of radionuclides
 - Food Chain Pathways
 - Internal and External Dosimetry
 - Special Case Radionuclides
 - Health Effects
 - Uncertainty Analysis

Radiation Measurements Laboratory (NE-550)

- Text
 - Radiation Detection and Measurement, Knoll
- Topics
 - Review of Radiation Detection Physics
 - Statistical Methods and Uncertainty Analysis
 - Gas, Scintillation, and Solid State Detectors for Photons
 - Analysis of Spectra
 - Neutron Detectors
 - Spectral Unfolding
 - TLDs

Courses in Medical Physics

- Medical Physics I (NE 567)
 - Uses of ionizing radiation in radiation therapy
 - Physics of interactions
 - Clinical applications
- Medical Physics II (NE 568)
 - Quality assurance
 - Treatment planning
 - Special treatment procedures
- Medical Imaging (Special Topics Survey Course)
 - Essentially all diagnostic methods are covered

Research and Students Graduated

- Groer
 - Radiation risk assessment
 - Graduated 22 M.S. and Ph.D. HP students through 2004
- Townsend
 - Space radiation, charged particle transport
 - Graduated 15 M.S. and 7 Ph.D. HP students through 2006
 - Five honors projects
- Miller
 - Radiological assessment, radiation detection
 - Graduated 54 M.S. and 9 Ph.D. HP students through 2006

Funding

- During the mid 90's about 15 students were continuously supported through Oak Ridge
- Currently all Health Physics research is funded through space radiation protection related contracts
- Proposals for detector development are under review by the National Science Foundation and National Nuclear Security Administration for detector development

Recruitment

- Mailings are sent to all high schools in Tennessee and Ten Academic Common Market States
- Maintain an exchange program with other nuclear engineering departments
- Presentations to freshmen in the college of engineering at The University of Tennessee

Accreditation

- The undergraduate nuclear engineering program at The University of Tennessee is accredited
- It was decided that a separate accreditation for Health Physics required more effort than could be readily accommodated

Distance Education at UTNE

- Six Distance Education (DE) programs
 - M.S. in Nuclear Engineering (NE)
 - Certificate in Nuclear Criticality Safety
 - Certificate in Maintenance and Reliability Engineering
 - Colloquium Program
 - Nuclear Criticality Safety Short Course
 - Reliability and Maintainability

M.S. in Nuclear Engineering With a Concentration in Health Physics

- Distance M.S. program is identical to our on-campus M.S. program, but with fewer courses offered
- Thesis or Engineering Project M.S. degree requires eight 3-hour courses (24 hours)
 - Four NE courses
 - Two courses in math, statistics, or comp. science
 - Two more courses in NE or a related field
- Project plus 2 NE courses (30 hours)
 - The project option require 3 hours of research (33 total hours

M.S. in Nuclear Engineering (continued)

- Sixteen distance courses are currently offered
 - Thirteen are synchronous (i.e., live and interactive in real time)
 - Three are asynchronous (web-based or on a CD)
- Admission: B.S. graduates in engineering, physics, chemistry, or mathematics: GPA of least 3.0/4.0
- Non-NE graduates must take at least one prerequisite course, "Fundamentals of Nuclear and Radiological Engineering" without graduate credit
 - Available asynchronously each semester
- Students may begin in any semester

M.S. in Nuclear Engineering (continued)

- Students come to campus at the end of their program to defend their work in a final oral examination
 - Oral exam covers all coursework and thesis or engineering practice project(s)
- M.S. requirements usually completed in six semesters
 - 1 course per semester for four semesters
 - 2 courses per semester for two semesters
 - Research or engineering practice project(s) are conducted during most semesters
- Pace could be slower or faster (student preference)

Distance Technology

- Most courses are delivered synchronously to student's computer using CENTRA software (Cyber Class), which is provided by the university
 - Cyber Class Interactivity: instructor to students, students to instructor, and student to student in real time
 - Each class is recorded and saved to accommodate working professionals who occasionally miss class
- Initially, NE instructors taught distance classes from their offices
- Currently, NE instructors use Smart Board 3000 and teach both local and distance students simultaneously from a regular classroom

Observations and Opinions

- Enrollment in Health Physics Classes is Relatively Strong (~15 each year in NE 551 and ~10 in NE 552)
- Current Funding for Health Physics is for Space Radiation Protection
- Funding in the Area of Homeland Security is a Realistic Opportunity
- Medical Physics Attracts More Students than HP
- Enrollments Have Been Relative Stable for About Five Years

Extra Slides

• Special Topics

Special Topics: Charged Particle Transport

- Text
 - Space Radiation Transport and Interactions (NASA RP 1257)
- Topics
 - Boltzmann transport equation derivation for electrons and heavy charged particles (mesons, hydrogen, helium and heavier nuclei)
 - Deterministic methods: Perturbation expansion, Green's Function, numerical methods
 - Monte Carlo methods
 - Heavy charged particle interactions and event generators

Internal Dosimetry (Special Topic)

- Basic Internal Dosimetry Concepts
- Anatomical Models
- Calculation of SEE
- Gastrointestinal Track Kinetics
- **Respiratory Track Kinetics**
- Biokinetics of Systemic Material
- **RBD Software**
- Bioassay Program at ORNL
- Radiation Transport for Internal Dosimetry
- Dose Assessment and Associated Software
- Radiation Transport for Internal Dosimetry
- Radiopharmaceutical Procedures
- Dosimetry of Bone Seekers
- Measurements of Internal Emitters
- Uncertainty Analysis

Radiation Biology (Special Topic, Objectives)

- Provide a foundation for the understanding of radiation effects upon biological systems.
- Discuss the use of radiation (brachytherapy, external beam, total body, electron mode, QA for radiation and others) in the treatment of cancerous tumors.
- Describe the use of agents that enhance radiation effects and/or protect cells from radiation damage.
- Reflect on current risk estimates for the development of leukemia/lymphoma and solid tumors.
- When necessary provide additional background in biochemistry, embryology, human anatomy, genetic and immunology for complete understanding of the subject.
- Aid students in preparation for future American Board of Radiology,
- ABR, examinations (if student are interested).

Uncertainty Analysis (Special Topic)

- Overview of Uncertainty Analysis & Fundamental Concepts
- Propagation of Variance & Least Squares
- The propagation and Analysis of Uncertainty, Chapter 8:Morgan,
- Generalized Least Squares
- Interpretation of the Variance-Covariance Matrix
- The Nature and Sources of Uncertainty, Chapter 4:Morgan
- Probability Distributions & Statistical Estimation, Chapter 5:Morgan
- Statistical Methods for Uncertainty Analysis
- Discussion of Numerical Experiments
- Description of Latin Hypercube Sampling Software & Crystal Ball
- Evaluation of Numerical Experiments
- The Value of Knowing How Little you Know, Chapter 12:Morgan
- Forward and Adjoint Methods Using Computer Calculus
- Deterministic Uncertainty Analysis
- Limit State Methodology
- Calibration Problems
- Bayesian Statistics for Uncertainty Analysis

Facilities Undergoing Decontamination and Decommissioning (Special Topic)

- MARSSIM Survey Design
- Decommissioning Overview
- Characterization
- Pathway Modeling
- DCGLs derivation, detection sensitivity
- Statistics (I and II),
- Background Reference Areas
- Final Status Surveys, Survey instrumentation
- Techniques and Experiences at Different D&D sites

